Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(2): 164-176, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38329640

RESUMO

Mercury (Hg) is a ubiquitous environmental contaminant known to bioaccumulate in biota and biomagnify in food webs. Parasites occur in nearly every ecosystem and often interact in complex ways with other stressors that their hosts experience. Hepatozoon spp. are intraerythrocytic parasites common in snakes. The Florida green watersnake (Nerodia floridana) and the banded watersnake (Nerodia fasciata) occur syntopically in certain aquatic habitats in the Southeastern United States. The purpose of this study was to investigate relationships among total mercury (THg) concentrations, body size, species, habitat type and prevalence and parasitemia of Hepatozoon spp. infections in snakes. In the present study, we sampled N. floridana and N. fasciata from former nuclear cooling reservoirs and isolated wetlands of the Savannah River Site in South Carolina. We used snake tail clips to quantify THg and collected blood samples for hemoparasite counts. Our results indicate a significant, positive relationship between THg and snake body size in N. floridana and N. fasciata in both habitats. Average THg was significantly higher for N. fasciata compared to N. floridana in bays (0.22 ± 0.02 and 0.08 ± 0.006 mg/kg, respectively; p < 0.01), but not in reservoirs (0.17 ± 0.02 and 0.17 ± 0.03 mg/kg, respectively; p = 0.29). Sex did not appear to be related to THg concentration or Hepatozoon spp. infections in either species. We found no association between Hg and Hepatozoon spp. prevalence or parasitemia; however, our results suggest that species and habitat type play a role in susceptibility to Hepatozoon spp. infection.


Assuntos
Eucoccidiida , Mercúrio , Poluentes Químicos da Água , Animais , South Carolina , Mercúrio/análise , Ecossistema , Parasitemia/parasitologia , Bioacumulação , Serpentes/parasitologia , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
Environ Toxicol Chem ; 41(3): 758-770, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35112731

RESUMO

Mercury (Hg) and radiocesium (137 Cs) are well-known environmental contaminants with the potential to impact the health of humans and wildlife. Snakes have several characteristics conducive to studying environmental contamination but have rarely been included in the monitoring of polluted sites. We investigated the bioaccumulation of Hg and 137 Cs and associations with sublethal effects (standard metabolic rate [SMR] and hemoparasite infections) in Florida green watersnakes (Nerodia floridana). We captured 78 snakes from three former nuclear cooling reservoirs on the US Department of Energy's Savannah River Site in South Carolina (USA). For captured snakes, we (1) determined whole-body 137 Cs, (2) quantified total Hg (THg) using snake tail clips, (3) conducted hemoparasite counts, and (4) measured the SMR. We used multiple regression models to determine associations among snake body size, capture location, sex, tail THg, whole-body 137 Cs, Hepatozoon spp. prevalence and parasitemia, and SMR. Average whole-body 137 Cs (0.23 ± 0.08 Becquerels [Bq]/g; range: 0.00-1.02 Bq/g) was correlated with snake body size and differed significantly by capture site (Pond B: 0.67 ± 0.05 Bq/g; Par Pond: 0.10 ± 0.02 Bq/g; Pond 2: 0.03 ± 0.02 Bq/g). Tail THg (0.33 ± 0.03 mg/kg dry wt; range: 0.16-2.10 mg/kg) was significantly correlated with snake body size but did not differ by capture site. We found no clear relationship between SMR and contaminant burdens. However, models indicated that the prevalence of Hepatozoon spp. in snakes was inversely related to increasing whole-body 137 Cs burdens. Our results indicate the bioaccumulation of Hg and 137 Cs in N. floridana and further demonstrate the utility of aquatic snakes as bioindicators. Our results also suggest a decrease in Hepatozoon spp. prevalence related to increased burdens of 137 Cs. Although the results are intriguing, further research is needed to understand the dynamics between 137 Cs and Hepatozoon spp. infections in semiaquatic snakes. Environ Toxicol Chem 2022;41:758-770. © 2022 SETAC.


Assuntos
Mercúrio , Animais , Biomarcadores Ambientais , Monitoramento Ambiental , Florida , Humanos , Mercúrio/análise , Rios , Serpentes/metabolismo
3.
Environ Pollut ; 276: 116722, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33640654

RESUMO

Mercury (Hg) is an environmental contaminant that poses a threat to aquatic systems globally. Temporal evaluations of Hg contamination have increased in recent years, with studies focusing on how anthropogenic activities impact Hg bioavailability in a variety of aquatic systems. While it is common for these studies and ecological risk assessments to evaluate Hg bioaccumulation and effects in wildlife, there is a paucity of information regarding Hg dynamics in reptiles. The goal of this study was to investigate temporal patterns in total mercury (THg) and methylmercury (MeHg) concentrations across a 36-year period, as well as evaluate relationships among and between destructive (kidney, liver, muscle) and non-destructive (blood, tail) tissue types in a common watersnake species. To accomplish this, we measured THg and MeHg concentrations in multiple tissues from brown watersnakes (Nerodia taxispilota) collected from Steel Creek on the Savannah River Site (SRS; Aiken, SC, USA) from two time periods (1983-1986 and 2019). We found significant and positive relationships between tail tips and destructive tissues. In both time periods, THg concentrations varied significantly by tissue type, and destructive tissues exhibited higher but predictable THg values relative to tail tissue. Methylmercury concentrations did not differ among tissues from the 1980s but was significantly higher in muscle compared to other tissues from snakes collected in 2019. Percent MeHg of THg in N. taxispilota tissues mirrored patterns reported in other reptiles, although the range of % MeHg in liver and kidney differed between time periods. Both THg and MeHg concentrations in N. taxispilota declined significantly from the 1980s to 2019, with average values 1.6 to 4-fold lower in contemporary samples. Overall, our data add further evidence to the utility of watersnakes to monitor Hg pollution in aquatic environments and suggest attenuation of this contaminant in watersnakes in our study system.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Monitoramento Ambiental , Mercúrio/análise , Rios , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 243(Pt A): 346-353, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30196204

RESUMO

Coal combustion is a major energy source in the US. The solid waste product of coal combustion, coal combustion residue (CCR), contains potentially toxic trace elements. Before 1980, the US primarily disposed of CCR in aquatic settling basins. Animals use these basins as habitat and can be exposed to CCR, potentially affecting their physiology. To investigate the effects of CCR on eastern mud turtles (Kinosternon subrubrum), we sampled 30 turtles exposed to CCRs and 17 unexposed turtles captured in 2015-2016 from the Savannah River Site (Aiken, SC, USA). For captured turtles, we (1) quantified accumulation of CCR in claw and blood samples, (2) used bacterial killing assays to assess influences of CCR on immune responses, (3) compared hemogregarine parasite loads, and (4) compared metabolic rates via flow-through respirometry between CCR-exposed and unexposed turtles when increased temperature was introduced as an added stressor. Turtles exposed to CCR accumulated CCR-associated trace elements, corroborating previous studies. Blood Se and Sr levels and claw As, Se, and Sr levels were significantly higher in turtles from contaminated sites. Average bacterial killing efficiency was not significantly different between groups. Neither prevalence nor average parasite load significantly differed between CCR-exposed and reference turtles, although parasite load increased with turtle size. Regardless of site, temperature had a significant impact on turtle metabolic rates; as temperature increased, turtle metabolic rates increased. The effect of temperature on turtle metabolic rates was less pronounced for CCR-exposed turtles, which resulted in CCR-exposed turtles having lower metabolic rates than reference turtles at 30 and 35 °C. Our results demonstrate that turtles accumulate CCR from their environment and that accumulation of CCR is associated with changes in turtle physiological functions when additional stressors are present.


Assuntos
Carvão Mineral/toxicidade , Oligoelementos/sangue , Oligoelementos/toxicidade , Tartarugas/metabolismo , Resíduos/análise , Animais , Carvão Mineral/análise , Ecossistema , Material Particulado/análise , Rios/química , Fumaça/análise , Tartarugas/sangue , Tartarugas/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...